DeltaMAXX™ Nanofiber Technology Outperforms FARR’s HemiPleat™

FEATURES / BENEFITS
- The industries smallest available fibers provide the best available filtration efficiency on sub micron particulate - MERV 15
- DeltaMAXXTM Nanofiber allows for surface loading filtration - EASY PULSE CLEANING
- Lower initial & operating pressure drop
- Unmatched release properties will offer reduced cleaning cycles
- Saves compressed air and energy costs
- Reduced outlet emissions = CLEANER AIR
- Less pulsing and stress = LONGER FILTER LIFE
- Reduced downtime
- Fewer filter changes = Lower Disposal Cost

Imperial Systems, Inc.
DeltaMAXX™ Nanofiber Filtration Technology is the most advanced technology media and pleated cartridge elements for use in FARR APC Brand Dust Collectors. DeltaMAXX™ Nanofiber has the finest fibers and highest MERV rating in the industry. DeltaMAXX™ Nanofiber will increase efficiency, reduce emissions and lengthen filter service life in your FARR APC Brand Dust Collector.

www.isystemsweb.com
300 Imperial Drive | Jackson Center, PA 16133
Tel 800.918.3013 | Fax 724.662.2801 | info@isystemsweb.com
Independent lab tests show that Imperial Systems’ DeltaMAXX™ Nanofiber Technology is the only cartridge with a MERV 15 rating based on ASHRAE Test Standard 52.2. DeltaMAXX™ Nanofiber Technology is more than 50% more efficient on 0.3 - 1.0 micron particulate than the FARR HemiPleat™.

In full lab testing utilizing an eight (8) cartridge dust collector, Imperial Systems’ DeltaMAXX™ Nanofiber Technology stabilized at a much lower pressure drop than the competition, requiring less pulse cycles. The FARR HemiPleat™ pulsed 94% more often than DeltaMAXX™ Nanofiber Technology. Less pulsing saves compressed air and reduces stress on the filter leading to a longer filter service life.

In full lab testing utilizing an eight (8) cartridge dust collector and atomite for test dust, Imperial Systems’ DeltaMAXX™ Nanofiber Technology emitted 97% less contaminant than the FARR HemiPleat™. The key is the nanofiber not the substrate. Superior submicron (0.3 - 1.0 microns) particle capture leads to lower emissions of contaminant.